大数据人官方②群

大数据人|中国大数据第一社区

 找回密码
 注册会员

扫一扫,访问微社区

查看: 1037|回复: 0

[其它] 用R软件绘制中国分省市地图

[复制链接]
  • TA的每日心情
    奋斗
    2015-7-30 23:05
  • 签到天数: 12 天

    [LV.3]偶尔看看II

    848

    主题

    968

    帖子

    4774

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    4774
    QQ
    发表于 2015-7-14 17:04:38 | 显示全部楼层 |阅读模式
    用R软件绘制中国分省市地图
    2009/07/02 邱怡轩

    版权声明:本文版权归原作者所有,未经许可不得转载。原文可能随时需要修改纰漏,全文复制转载会带来不必要的误导,若您想推荐给朋友阅读,敬请以负责的态度提供原文链接;点此查看如何在学术刊物中引用本文

    常规引用方式
    邱怡轩. 用R软件绘制中国分省市地图. 统计之都,2009.07. URL: http://cos.name/2009/07/drawing-china-map-using-r/.

    BibTeX引用
    @ARTICLE{,
      AUTHOR = {
    邱怡轩},
      TITLE = {用R软件绘制中国分省市地图},
      JOURNAL = {统计之都},
      YEAR = {2009},
      month = {07},
      URL = {http://cos.name/2009/07/drawing-china-map-using-r/},
    }
    【注】新版本的maptools包对很多函数进行了修改,对于修改的内容,文章中用红色的文字进行了说明。

    鉴于最近有不少人在讨论用R软件绘制地图的问题,我也就跟着凑了凑热闹,对相应的方法学习了一番。下面的这篇文章是一个初步的介绍,还有很多内容仍在学习和探索中,如果大家有什么意见或建议,我将根据自己学习的情况对文章进行进一步的补充。
    在R中绘制地图其实是十分方便的,最直接的办法大概就是安装maps和mapdata这两个包,然后输入下面的命令:
    1. library(maps)
    2. library(mapdata)
    3. map("china")
    复制代码

    其中map()函数还可以加上很多参数,在这里就不一一详述,具体的用法只需问号之。然而仔细看一看这张地图你会发现重庆市和四川省仍然是浑然一体,可见该地图的数据应该是有些年头了。
    幸运的是,通过谢益辉的这篇博文我们已经可以大体知道该如何操作了,下面就为大家介绍一下具体的步骤。
    首先,从这里下载中国地图的GIS数据,这是一个压缩包,完全解压后包含三个文件(bou2_4p.dbf、bou2_4p.shp和bou2_4p.shx),将这三个文件解压到同一个目录下,并在R中设好相应的工作空间,然后安装maptools包,运行如下程序:
    1. library(maptools);
    2. x=read.shape('bou2_4p.shp');#下文中会继续用到x这个变量,
    3.                                            #如果你用的是其它的名称,
    4.                                            #请在下文的程序中也进行相应的改动。
    5. plot(x);
    复制代码

    【修改】新版本的maptools包不再提供read.shape()函数,请用readShapePoly()代替。
    这时一张完整的中国地图就已经画好了。但是在实际使用的过程中,我们往往会根据自己的需要对地图中的某些省份着以特定的颜色,这时就可以通过调节plot命令中的fg参数来予以实现。然而为了清楚地说明这部分的内容,我需要插播一段R绘制地图的原理。
    ======================传说中的分割线=====================
    在绘制地图时,每一个省市自治区或者岛屿都是用一个多边形来表示的。之前的GIS数据,其实就是提供了每一个行政区其多边形逐点的坐标,然后R软件通过顺次连接这些坐标,就绘制出了一个多边形区域。在上面的数据中,一共包含了925个多边形的信息,之所以有这么多是因为一些省份有很多小的附属岛屿。在这925个多边形中,每一个都对应一个唯一的ID,编号分别从1到925。
    ======================传说中的分割线=====================
    回到刚才的话题,plot命令中的fg参数在本例中应该是一个长度为925的向量,其第i个分量的取值就代表了地图中第i个多边形的颜色。一个简单的尝试是运行下面这个命令看看效果:
    1. plot(x,fg=gray(924:0/924));
    复制代码

    【修改】新版本的maptools包的绘图参数也有所改变,请将fg换成col。
    于是自然就产生了一个问题:如何获取某一个特定地区的ID,进而设置我们想要的颜色?事实上,在变量x中,就已经存储了我们想要的信息。在R中输入“x[[2]]”或“x$att.data”,会得到一个925行7列的数据框,这其实是bou2_4p.dbf这个文件中存储的信息,之前的read.shape()函数虽然读取的是bou2_4p.shp文件,但在默认情况下会把dbf文件的信息也放到变量之中。对于这个数据框,其行名就是每一个区域的ID编号,第一列和第二列分别是面积和周长,最后一列是该区域所属的行政区名,其它的列应该也是一些编号性质的变量。于是,通过查找相应的行政区对应的行名,就可以对fg参数进行赋值了。下面是我编的一个函数,用来生成所需的fg向量:
    1. getColor=function(mapdata,provname,provcol,othercol)
    2. {
    3.     f=function(x,y) ifelse(x %in% y,which(y==x),0);
    4.     colIndex=sapply(mapdata$att.data$NAME,f,provname);
    5.     fg=c(othercol,provcol)[colIndex+1];
    6.     return(fg);
    7. }
    复制代码

    【修改】地图数据的组织形式有所变化,上面函数中的mapdata$att.data$NAME需要替换为mapdata@data$NAME。
    其中mapdata是存放地图数据的变量,在上面的例子中就是x,provname是需要改变颜色的地区的名称,provcol是对应于provname的代表颜色的向量(名称和数字均可),othercol是其它地区的颜色。举例如下:
    1. provname=c("北京市","天津市","上海市","重庆市");
    2. provcol=c("red","green","yellow","purple");
    3. plot(x,fg=getColor(x,provname,provcol,"white"));
    复制代码

    1.png
    注意provname一定要写地区的全称,写法可以参照下面这条命令生成的向量:
    1. as.character(na.omit(unique(x$att.data$NAME)));
    复制代码

    由此生成的向量有33个元素,少了澳门特别行政区,这是这个数据中的一块瑕疵。在x$att.data的第899行有一个NA,不知道它代表的是否就是澳门。
    利用类似的方法就可以根据自己的需要对不同的区域进行着色,下面再举一例。从国家统计局获取2007年我国各地区的人口数据,然后根据人口的多少对各省份进行着色。程序如下:
    1. provname=c("北京市","天津市","河北省","山西省","内蒙古自治区",
    2.                      "辽宁省","吉林省","黑龙江省","上海市","江苏省",
    3.                      "浙江省","安徽省","福建省","江西省","山东省",
    4.                      "河南省","湖北省","湖南省","广东省",
    5.                      "广西壮族自治区","海南省","重庆市","四川省","贵州省",
    6.                      "云南省","西藏自治区","陕西省","甘肃省","青海省",
    7.                      "宁夏回族自治区","新疆维吾尔自治区","台湾省",
    8.                      "香港特别行政区");
    9. pop=c(1633,1115,6943,3393,2405,4298,2730,3824,1858,7625,
    10.         5060,6118,3581,4368,9367,9360,5699,6355,9449,
    11.         4768,845,2816,8127,3762,4514,284,3748,2617,
    12.         552,610,2095,2296,693);
    13. provcol=rgb(red=1-pop/max(pop)/2,green=1-pop/max(pop)/2,blue=0);
    14. plot(x,fg=getColor(x,provname,provcol,"white"),xlab="",ylab="");
    复制代码

    2.png
    其中颜色越深的地方代表人口数越多,反之为人口数越少。
    此外,在绘制地图的过程中,还有一个比较有用的参数是recs,它是一个由多边形ID组成的向量,表示在地图中只画出这些ID所代表的区域。利用这个参数,就可以画出某一部分的地图,例如下面的例子是我国中部六省的地图:
    1. getID=function(mapdata,provname)
    2. {
    3.     index=mapdata$att.data$NAME %in% provname;
    4.     ids=rownames(mapdata$att.data[index,]);
    5.     return(as.numeric(ids));
    6. }
    7. midchina=c("河南省","山西省","湖北省","安徽省","湖南省","江西省");
    8. plot(x,recs=getID(x,midchina),
    复制代码

    3.png

    上面的getID()是我编写的一个功能与getColor()类似的函数,用来返回指定省份的ID。
    【修改】新版本的maptools包的绘图函数已经取消了recs这个参数,现在要实现这个功能,可以在颜色上把不需要的省份变成白色,其中填充色用col参数,边界颜色用border参数。例如上面的例子可以用下面的函数来实现:
    1. plot(x, col = getColor(x, midchina, rep("green", 6),
    2.        "white"), border = "white",
    复制代码

    最后要说的是,在画出的图上仍然可以用points()函数和text()函数加上点和文字,而maptools包中还提供了一个pointLabel()函数,用来解决文本标签的重叠问题。这部分内容请参阅博文:用R画中国地图并标注城市位置,以及避免文本标签重叠:maptools中的pointLabel()
    从以上的内容来看,本文所述的都是一些最基本的绘图方法,还没有对地理信息数据进行更进一步的分析。如果有机会的话,这一主题的下一篇文章将为大家介绍地图数据的组成结构,并说明如何将不同格式的地理数据整合起来,例如如何在上面的地图上绘制出我国的铁路、水系分布等内容。

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册会员

    本版积分规则

    关闭

    站长推荐上一条 /2 下一条


    id="mn_portal" >首页Portalid="mn_P18" onmouseover="navShow('P18')">应用id="mn_P15" onmouseover="navShow('P15')">技术id="mn_P37" onmouseover="showMenu({'ctrlid':this.id,'ctrlclass':'hover','duration':2})">前沿id="mn_P36" onmouseover="navShow('P36')">宝箱id="mn_P61" onmouseover="showMenu({'ctrlid':this.id,'ctrlclass':'hover','duration':2})">专栏id="mn_P65" >企业id="mn_Nd633" >导航 折叠导航 关注微信 关注微博 关注我们

    QQ|广告服务|关于我们|Archiver|手机版|小黑屋|大数据人 ( 鄂ICP备14012176号-2  

    GMT+8, 2020-6-3 02:00 , Processed in 0.230375 second(s), 38 queries .

    Powered by 小雄! X3.2

    © 2014-2020 bigdataer Inc.

    快速回复 返回顶部 返回列表